Force and Topography Reconstruction Using GP and MOR for the TACTIP Soft Sensor System
نویسندگان
چکیده
Sensors take measurements and provide feedback to the user via a calibrated system, in soft sensing the development of such systems is complicated by the presence of nonlinearities, e.g. contact, material properties and complex geometries. When designing soft-sensors it is desirable for them to be inexpensive and capable of providing high resolution output. Often these constraints limit the complexity of the sensing components and their low resolution data capture, this means that the usefulness of the sensor relies heavily upon the system design. This work delivers a force and topography sensing framework for a soft sensor. A system was designed to allow the data corresponding to the deformation of the sensor to be related to outputs of force and topography. This system utilised Genetic Programming and Model Order Reduction methods to generate the required relationships. Using a range of 3D printed samples it was demonstrated that the system is capable of reconstructing the outputs within an error of one order of magnitude.
منابع مشابه
The TacTip Family: Soft Optical Tactile Sensors with 3D-Printed Biomimetic Morphologies.
Tactile sensing is an essential component in human-robot interaction and object manipulation. Soft sensors allow for safe interaction and improved gripping performance. Here we present the TacTip family of sensors: a range of soft optical tactile sensors with various morphologies fabricated through dual-material 3D printing. All of these sensors are inspired by the same biomimetic design princi...
متن کاملAn Unknown Input Observer for Fault Detection Based on Sliding Mode Observer in Electrical Steering Assist Systems
Steering assist system controls the force transfer behavior of the steering system and improves the steering probability of the vehicle. Moreover, it is an interface between the diver and vehicle. Fault detection in electrical assisted steering systems is a challenging problem due to frequently use of these systems. This paper addresses the fault detection and reconstruction in automotive elect...
متن کاملTACTIP - Tactile Fingertip Device, Challenges in reduction of size to ready for robot hand integration
Previous work on the TACTIP project has demonstrated a prototype tactile fingertip device, at a little over twice the diameter(40mm) of a human fingertip (16-20mm). Unlike most other developed MEMS sensors, the TACTIP device is appropriate for all tasks for which humans use their fingertips; examples include object manipulation, contact sensing, pressure sensing and shear force detection. This ...
متن کاملFlexible Foot/Ankle Based on PKM with Force/Torque Sensor for Humanoid Robot
This paper describes the development of a novel humanoid robot foot/ankle based on an orientation Parallel Kinematic Mechanism for intelligent and flexible control. With three identical Universal-Prismatic-Spherical prismatic-actuated limbs and a central Universal-Revolute passive limb, the PKM can perform three degrees of freedom rotation motions. In order to enable the humanoid robot safely t...
متن کاملDesign and Modeling of a New Type of Tactile Sensor Based on the Deformation of an Elastic Membrane
This paper presents the design and modeling of a flexible tactile sensor, capable of detecting the 2D surface texture image, contact-force estimation and stiffness of the sensed object. The sensor is made of polymer materials. It consists of a cylindrical chamber for pneumatic actuation and a membrane with a mesa structure. The inner radius of the cylindrical chamber is 2cm and its outer radius...
متن کامل